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Abstract In this paper, we introduce and study a new iterative scheme for finding the
common element of the set of common fixed points of a sequence of nonexpansive map-
pings, the set of solutions of an equilibrium problem and the set of solutions of the general
system of variational inequality for o and p-inverse-strongly monotone mappings. We show
that the sequence converges strongly to a common element of the above three sets under
some parameters controlling conditions. This main theorem extends a recent result of Ceng
et al. (Math Meth Oper Res 67:375-390, 2008) and many others.
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1 Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively and let C
be a closed convex subset of H. Let F be a bifunction of C x C into R, where R is the set
of real numbers. The equilibrium problem for F : C x C — Risto find x € C such that

F(x,y)>0 forallyeC. (1)

The set of solutions of Eq. (1) is denoted by E P (F'). This equilibrium problem contains
the fixed point problem, optimization problem, saddle point problem, variational inequality
problem and Nash equilibrium problem as its special cases (see, e.g. , Blum and Oettli [2]).
Numerous problems in physics, optimization, and economics reduce to find a solution of
Eq. (1). Given a mapping 7 : C — H,let F(x,y) = (Tx,y — x) forall x, y € C. Then

S. Plubtieng (&) - T. Thammathiwat
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
e-mail: Somyotp@nu.ac.th

@ Springer



448 J Glob Optim (2010) 46:447—464

ze€ EP(F)ifandonlyif (Tz,y—z) > Oforall y € C, i.e., z is a solution of the variational
inequality.

Let A : C — H be amapping. The classical variational inequality, denoted by VI (A, C),
is to find x* € C such that

(Ax*, v —x") >0

for all v € C. The variational inequality has emerged as a fascinating and interesting branch
of mathematical and engineering sciences with a wide range of applications in industry,
finance, economics, social, ecology, regional, pure and applied sciences; see, e.g. [5, 10,
18-21, 24, 26, 27] and the references therein. Related to the variational inequalities, we have
the problem of finding the fixed points of the nonexpansive mappings, which is the current
interest in functional analysis. It is natural to consider a unified approach to these different
problem; see e.g. [10, 15, 19, 27]. A mapping A of C into H is called a-inverse-strongly
monotone [3, 9] if there exists a positive real number « such that

(Au — Av,u —v) > a||Au — Av|)?

forall u, v € C. It is obvious that any «-inverse-strongly monotone mapping A is monotone
and Lipschitz continuous. A mapping S of C into itself is called nonexpansive if

[1Su — Svll < llu — ]|

forall u, v € C. We denote by F (S) the set of fixed points of S. For every point x € H, there
exists a unique nearest point in C, denoted by Pcx, such that

lx — Pex|| <|lx —y| forally € C.

Pc is called the metric projection of H onto C. For finding an element of F(S)NVI(A, C),
Takahashi and Toyoda [19] introduced the following iterative scheme:

Xpt+1 = Xy + (1 —an)SPc (X — AnAxy) (2)

foreveryn =0, 1, 2, ..., where xg = x € C, «, is a sequence in (0, 1), and A, is a sequence
in (0, 2a). Recently, Nadezhkina and Takahashi [10] and Zeng and Yao [27] proposed some
new iterative schemes for finding elements in F(S) N VI(A, C). In 2006, Yao and Yao [25]
introduced the following iterative scheme:

Let C be a closed convex subset of real Hilbert space H. Let A be an o — inverse-strongly
monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such
that F(S) N VI(A, C) # @. Suppose x; = u € C and {x,}, {y,} are given by

Yn = Pc(xy — Ay Axy)

3)
Xn+1 = At + BpXn + YuSPc(yn — AnAyn),

where {«,}, {8}, {yn} are three sequences in [0, 1] and {A,} is a sequence in [0, 2«]. They
proved that the sequence {x,} defined by Eq. (3) converges strongly to common element of
the set of fixed points of a nonexpansive mapping and the set of solutions of the variational
inequality for «-inverse-strongly monotone mappings under some parameters controlling
conditions.

Motivated and inspired by Takahashi and Takahashi [18], Plubtieng and Punpaeng [12]
introduce a new iterative process below for finding a common element of the set of fixed points
of a nonexpansive mapping, the set of solutions of an equilibrium problem, and the solution
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set of the variational inequality problem for an a-inverse-strongly monotone mapping in a
real Hilbert space. Suppose x; =« € C and {x,}, {y,} and {u,} are given by

1
F(up, y) + —(y —up,up —x,) >0, VyeC,;

rn 4)
Yn = Pc(uy — A Auy) (
Xnt1 = At + BuXn + YuSPc(Yn — AAyn), n €N.

They proved that if the sequences {«,,}, {B,}, {¥x} and {r,, } of parameters satisfy appropri-
ate conditions, then the sequence {x,} generated by Eq. (4) converges strongly to a common
element of the set of fixed points of nonexpansive mappings and the solution of variational
inequality and an equilibrium problems.

Let C be a closed convex subset of real Hilbert space H. Let A, B : C — H be two
mappings. We consider the following problem of finding (x*, y*) € C x C such that

(AAY* +x* —y*, x —x*) >0, VxeC,

5
(uBx* +y* —x*, x —y*)y >0, VxeC, ®)

which is called a general system of variational inequalities where A > 0 and u > 0 are
two constants. The set of solution of Eq. (5) is denoted by 2. In particular, if A = B, then
problem Eq. (5) reduces to finding (x*, y*) € C x C such that

(AAY* +x* —y*, x —x*) >0, VxeC,

6
(WAX* 4+ y* —x*, x —y*) >0, Vx € C, ©

which is defined by Verma [20] (see also Verma [21]), and is called the new system of varia-
tional inequalities. Further, if we add up the requirement that x* = y*, then problem Eq. (6)
reduces to the classical variational inequality VI (A, C).

Very recently, Ceng et.al [4] introduce and study a relaxed extragradient method for find-
ing a common of the set solution of Eq. (5) for the « and S-inverse strongly monotone and
the set of fixed points of a nonexpansive mapping in real Hilbert space. Let x; = u € C and
{x,} are given by

yn = Pc(xy — nBxy)

@)
Xpp1 = g + Buxny + yuSPc(yn — AAyy),n € N.

Then, they proved that the iterative sequence {x, } converges strongly to a solution of problem
Eq. (5) Motivated by above results, Kumam and Kumam [8] introduce a viscosity relaxed
extragradient approximation method for finding a common element of the set of fixed points of
anonexpansive mapping, the set of solutions of an equilibrium problem, and the solutions of
a general system of variational inequality problem for inverse-strongly-monotone mappings.
Then they proved strong convergence theorems under some parametric controlling conditions.

On the other hand, Aoyama, et al. [1] introduce a Halpern type iterative sequence for find-
ing a common fixed point of a countable family of nonexpansive mappings. Let x; =x € C
and

Xp1 = apx + (1 — ) Tuxy ®)

for all n € N, where C is a nonempty closed convex subset of a Banach space, {«,} is a
sequence in [0, 1] and {7,,} is a sequence of nonexpansive mappings with some condition.
They proved that {x, } defined by Eq. (8) converges strongly to a common fixed point of {7}, }.
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Motivated and inspired by Plubtieng and Punpaeng [12] and Ceng et.al [4], this paper
is organized as follows. In Sect. 2, we present some basic concepts and useful lemmas for
proving the convergence result of this paper. In Sect. 3, we introduce the following iterative
sequence in a Hilbert space H. Let C be a nonempty closed convex subset of H and let f be a
contractionon H.Let A, B : C — H be the o and f—inverse-strongly monotone mappings,
respectively. Given xg = u € C and

1
F(urz,Y)+7<y_unaun —xy) 20, VyeC;
n

yn = Pc(uy — pBuy) &)
Xnt1 = An f (Xp) + Buxn + VuSu Pc(Yn — AAyy),

where {«,,}, {B,}, {ya} are three sequences in [0, 1], {r,} C (0, co) and {S, } is a sequence of
nonexpansive mappings C into H with some conditions. Then we prove that the sequence
{x,} defined by Eq. (9) converges strongly to a common of the set of common fixed points
of a sequence of nonexpansive mappings, the set of solutions of an equilibrium problem, and
the solution set of the general system variational inequality problem which is connected with
the result of Ceng et.al [4]. In Sect. 4, we apply our main theorem to the W-mapping and a
strictly pseudocontractive on C.

2 Preliminaries

Let H be a real Hilbert space with norm | - || and inner product (-, -) and let C be a closed
convex subset of H. It is well known that Pc is a nonexpansive mapping of H onto C and
satisfies

(x =y, Pcx — Pcy) = | Pcx — Pey|)? (10)

for every x, y € H. Moreover, Pcx is characterized by the following properties: Pcx € C
and

(x — Pcx,y — Pcx) <0, (11)
Ix = yI* > Ilx — Pex|I* + Iy — Pex||? (12)

forallx € H,y € C.
The following lemmas will be useful for proving the convergence result of this paper.

Lemma 1 [11] Let (E, (.,.)) be an inner product space. Then for all x,y,z € E and
o, B,y €10, 1]witha+ B+ y =1, we have

lax + By + yzl*=alxlI* + BlIylI* + v lzI*—aBlx — ylI*—aylx — zI* — By lly — zII*.

Lemma 2 [15] Let {x,,} and {y,} be bounded sequences in a Banach space X and let {8,}
be a sequence in [0, 1] with 0 < liminf, .« B, < limsup,_, ., Bn < 1. Suppose x,+1 =
(1= Bn)yn + Buxn for all integers n > 0 and lim sup,,_, o (| yn+1 — Y ll = [ Xn+1 — xu11) < 0.
Then, limy, 00 [|yn — xu |l = 0.

Lemma 3 [7] Let H be a Hilbert space, C a closed convex subset of H, and T : C — C
a nonexpansive mapping with F(T) # (. If {x,} is a sequence in C weakly converging to
x € Cand if {(I — T)x,} converges strongly to y, then (I — T)x = y.
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Lemma 4 ([23]). Assume {a,} is a sequence of nonnegative real numbers such that
ap+1 =< (1 _O[n)an +38,, n>0

where {ay,} is a sequence in (0, 1) and {8, } is a sequence in R such that

(1) 258 00 =0
(2) limsup,_, o, 2—2 <0o0r>02, [, < 0.

Then lim, oo a, = 0.

For solving the equilibrium problem for a bifunction F' : C x C — R, let us assume that F
satisfies the following conditions:

(Al) F(x,x)=0forallx € C;

(A2) F is monotone, i.e., F(x,y)+ F(y,x) <0 forallx,y € C;

(A3) foreachx,y,z € C,limy_o F(tz+ (1 —t)x,y) < F(x, y);

(A4) foreachx € C,y — F(x,y) is convex and lower semicontinuous.

The following lemma appears implicitly in [2]

Lemma 5 [2] Let C be a nonempty closed convex subset of H and let F be a bifunction of
C x C into R satisfying (Al)-(A4). Let r > 0 and x € H. Then, there exists 7 € C such that

1
F(z,y)+;(y—z,z—x)zo forall y € C.

The following lemma was also given in [6].

Lemma 6 [6] Assume that F : C x C — R satisfies (Al)-(A4). Forr > O and x € H,
define a mapping T, : H — C as follows:

1
T, (x) = [ZGC:F(z,y)Jr;(y—z,z—x) ZO,VyGC]

forall z € H. Then, the following hold:

T is single-valued;

T, is firmly nonexpansive,i.e., forany x,y € H, |Trx — Tpy||> < (Tyx — Try, x — y):
F(T)) = EP(F);

EP(F) is closed and convex.

bl e

Lemma 7 [4] For given x*, y* € C, (x*, y*) is a solution of problem (5) if and only if x* is
a fixed point of the mapping G : C — C defined by

G(x) = Pc[Pc(x — uBx) — AAPc(x — uBx)], VxeC,
where y* = Pc(x — uBx).
Lemma 8 In a real Hilbert space H, there holds the inequality
e+ Y12 < l? +2(v. 2 +y). Vx.y e H.

Lemma 9 [13] Let C be a nonempty bounded closed convex subset of Hilbert space H and
{T,} a sequence of mappings of C into itself. Suppose that

lim pf =0, (13)

k,—o00
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where pf = sup{||Txz — Tiz|| : z € C} < 00, for all k,l € N. Then for each x € C, {T,x}
converges strongly to some point of C. Moreover, let T be a mapping from C in to itself
defined by

Tx = lim T,x, VYxeC.
n—o0

Then limsup,,_, . {IITz — Tyzl| : z € C} =0.

From lemma 9, it easy to see that 7' is nonexpansive.

3 Main results

In this section, we prove strong convergence theorems for finding a common element of the
set of solutions of an equilibrium problem, the set of common fixed points of a sequence of
nonexpansive mappings and of the solution set of the general system variational inequality
problem for an @ and B-inverse-strongly monotone mapping in a real Hilbert space.

Theorem 1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be
a bifunction from C x C — R satisfying (Al)-(A4) and let A, B : C — H be the a and
B—inverse-strongly monotone mappings, respectively. Let f be a contraction of H into itself
with o € (0, 1) and let {S,} be a sequence of nonexpansive mappings of C into H such that
satisfies condition Eq. (13) and N2 | F(S,) N Q N EP(F) # §. Suppose x; = u € C and
{xu}, {yn} and {uy} are given by

1
F(uy, y)+7<y_un;un —xp) >0, VyeC;

n
Yn = Pc(uy — j1Buy) (14)

Xnt1 = n f (Xp) + Buxn + VuSu Pc(yn — AAyy),

for all n € N, where & € (0,2a), u € (0,28) and {a,}, {Bn}, {yn} are three sequences in
[0, 1] and {r,} C (0, c0) satisfying

@ ap+Bu+yva=1

(i) limy—oop =0, > 02 | oy = 00,

(iii) 0 < liminf, o B, <limsup,_, . Bn < 1,

(v) liminf, oo 1y > 0, X0 | |rag1 — rnl < 00.

If S is a mapping of C into itself defined by Sx = lim,_, Spx Vx € C and F(S) =
N2 F(Sy), then {x,} converges strongly to X € F(S) N Q N EP(F) where X =
Prsynanepr) f(X) and (x, y) is a solution of problem Eq. (5) such that y = Pc (X — uBX).
Proof Put Q=Pr(s)nankp(F)- It easy to see that Q f is a contraction. By Banach contraction
principle, there exist zo € F(S) NN E P (F) such that zo=0f (z0)=Pr(s)nenepF) f (o).
Since A € (0, 2«) and p € (0, 28), it easy to see that I — AA and [ — B are nonexpansive.
Letx* € F(S)NQN EP(F) and let {7}, } be a sequence of mappings defined as in Lemma
6. Thus, we have x* = S,x* = Pc[Pc(x* — uBx*) — AAPc(x* — uBx*)] = T, x*. Put
y* = Pc(x* — uBx*) and v, = Pc(yn — AAyy). Then x* = Pc(y* — AAY*), xp41 =
o f(xn) + Buxn + YnSnv, and hence

lvn = x*|l = | Pc(yn — AAyn) — Pc(y* — AAY)|| < [(yn — AAYn) — " — 2AYH) ||
< llvn = ¥*Il = | Pc(un — nBuy) — Pc(x™ — uBx™)||
< l(up — pBuyp) — (x* — uBx™)|| < lup — x*|

= 1Ty, %0 — T, x| < [lxn — X7 (15)
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Thus, we have

lln f (xn) + BuXn + YnSuvn — x* ||

anll f(xn) = x|+ Ballxn — X" + yullva — x|l

anll f(xn) = x|+ anll f () = X5+ Bullxn — x* [l + vallxn — x|
anll f () = x* ||+ (1 = e (1 — ) flxy — x|

“II. IIf ™) — x*|l ] .

l—«o

41 — x|

IAIA

IA

max [ lx, —x

By induction, we get ||x, —x*|| < max{|lx; —x*|, W} foralln > 1. This implies that
{x,} is bounded and hence the sets {u,}, {v,}, {Sp+1vn}, {Bu,} and {Ay,} are also bounded.
Moreover, we observe that

lvat1 — Vnll = 1Pc(Ynt1 — AAYns1) — Pc(yn — LAYl
< N1nt1 = AAYt1) — n — AAyD)I < llyn+1 — yull
= | Pc(unt+1 — uBupt1) — Pc(up — pBuy)||

< l@ns1 — pBupg1) — (up — pBup)|l < lluns1 — unll- (16)
On the other hand, from u,, = T}, x, and u,41 = T}, Xy+1, We note that
F(u,,,y)—l—ri(y—un,un—xn)zO forall yeC 17)
n
and
Fupy1,y) + o~ (y = tnt1, Upy1 — Xpy1) 2 0 forall yeC. (18)

Putting y = u,,4+1 in Eq. (17) and y = u,, in Eq. (18), we have

1
F(uy, Mn+1)+7<un+l — Uy, Uy — Xp) =0 (19)
n
and
F(un+ls “n) + (un — Up+1, Un+1 — xn+1> > 0. (20)
'n+1
From (A2), we have
<un+1 gy, 2T Fel T x"“> >0 @)
'n n+1
and hence
r
<un+1 —Up, Uy — Upt] + Upt] — Xy — , nl (un+l - xn+1)> > 0. (22)
n+

Without loss of generality, let us assume that there exists a real number ¢ such thatr, > ¢ > 0
for all n € N. Thus, we have

2 "n
luprr —unll” < <un+l — Up, Xp4+1 — Xp + (1 - , ) (Uny1 — xn+1)>
n+1

'n

< llupg1 — unll [”xthl —xull + ’1 - ; llen+1 _anrl”]

n+
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and hence

lttn1 — unll < lxpe1 — xull + - [Fnt1 — rullltn+1 — Xp41l

n+1

1
< X1 — xall + ;|Vn+l —rulL, (23)

where L = sup{|lu, — x| : n € N}. It follows from Egs. (16) and (23) that

1
lvnsr — vall < llxp+1 — xull + ;|rn+l —ralL. (24)

Let x,+1 = (1 — By)zn + Buxn. We note that

Xn+1 — BnXn _ an f(xp) + VuSp Pc(Yn — AnAyn) _ o f(Xn) + YuSuvn

n —

1 - lgn B 1 - lgn - 1 - ﬂn
and hence
z = Ant1f (nt1) + Vnr1Sn + Toggg _ o f (Xn) + YuSuvn
T I= a1 1= B
Ant1f (Xn+1) an f(xn) Vn+1
= - S, - S
1= Bort 1— B, + 1 _ﬁn+l( n+1VUn+1 n+1Un)
Vn+1 Vn Vn
- S, —(S -5 . 25
+(1_,3n+1 1_,3n) n+1Un+1_,Bn( n+1Un nUn) (25)

Combining Egs. (24) and (25), we have

+1
MHJ—@H—MHJ—mnsl_%n|uumnn+1_MMfuwn
Vn+1 Yn+1 Yn
+————w+rwn+‘ — 1lSn+1nl
1= Buir T =B =BT
+1 Sup |81z — Spzll = %1 —
ﬂn z€{v,}
”lnﬂx1w+ LF Gl
T =BT m "

Yn+1 Yn+1
gt = Xnll + o |rg1 — ralL
L= o " A= By "

p+1 Qp
+ 1 Sn10nl
L= Bup1 1=B,| 0"
+1 Sup [1Su112 — Spzll — %1 — Xl
ﬂn z€{vy}
Up+1 Oy
< — |l f D) + IRZES]
L—Bppr o~ " 1— By "
Yn+1
———— |1 —1alL
(1= Bug)e " "
Upn+1 (077
+ I Su10nll
1 - IBnJrl 1 - ,Bn " "
Vi
+1 " sup |ISu+1z — Spzll.
ﬂn z€{vy}
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This together with (ii), (iii), (iv) and Eq. (13) imply that
lim sup(||zn+1 — Zall = lxn+1 — xul) < 0.
n—oo

Hence, by Lemma 2, we obtain ||z, — x,|| = 0 as n — oco. Consequently,
lim ”xn-‘rl — Xyl = lim (1 — ﬂn)”zn —xu[ =0. (26)
n—oo

n—o0o

From (iv), Egs. (16), (23) and (26), we also have [lv,41 — v, || = O, [lup41 — unll — 0 and
l¥n+1 — ynll = 0 asn — oo. Since

Xpp1 — Xp = oty [ (Xn) + BuXu + VuSnvn — Xn = an(f (xn) — xu) + ¥ (Spvn — Xp),
it follows by (ii) and Eq. (26) that ||x, — S,v,|| — 0 as n — oo. This implies that

1Svn = Xull = 1SVn = Spvull + 1Spvn — Xull < S?P} 1Sz = Snzll + 1Snvn — Xull — O
z&{vy

For x* € F(S)N QN EP(F), we have

2
ey — x™||

2
”Tr,,xn - Trnx*|| =< (Tr,,xn - Tr,,x*7 Xn —X*> = (un —x¥, Xn _x*)
1
2 2 2
= 5 (llun = X Al — XF7 =l — unll?)
and hence ||u,, — x*||2 < ||lx, — x*||2 — ||xn — p|?. From Eq. (16), we obtain

lletn f (xXn) + Buxn + VnSuvn — x*|?

2
%01 — ™l

< ol fC) = FEOZ + anll £ 5 — x> + Bullxn — x*|12
+ Yl Spvn — x*||
< anallxy — I + anll £ ) = x* 12+ Ballxn — X1 + yallvn — 21
< (@ + B)xn — X*[17 + anll f(*) — X7 + yallun — x*|?
< anll £ (*) = X% + (oner + Ba)llxn — x|
+ Y (2 = x*117 = [0 — w|I?)
= | fF) = ¥+ (@n + B+ v 5 — X1 = yullxn — un?
< all f ) = x|+ o — 3N = yullxn — ull? 27)

and hence

A

2 2 2 2
Vallxn — unll® < ol ) = X7 + llxn — 217 = g1 — 27|
2
anll £ &) = x* 7+ l1xn — Xp1 [ — x5+ e — x*D - (28)

IA

since o, — 0 and Eq. (26) imply that ||u, — x,|| — 0 as n — oo. This implies that
1Snvn — unll < I1Spvn — X ll + X — upll = 0
and so

[1Svn — unll < 1Svn = Suvpll + 1Spvn — unll < sup Sz — Spzll + 1Spvn — unll - 0

z€{vn}
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From Lemma 1, Egs. (15) and (27), we get

1 — X117 < el f ) = ¥ + Ballxn — x* I + pullvw — x*)12

< anll f ) = X7+ anll £ (55 — x| + Ballxa — x*|7
+ Yull P (yn — 2Ayn) — Pc(y* — AAy)||?

< anll F %) = x|+ (aner + B lxn — x|
+ Vullyn — AAyy — y* — 2AY*|?

= o[l F (%) — x| + (et + B) lxn — x* |7
+ Yl n = ) = A(Ayn — AyH)|1?

= | F () = x* | + (e + B 1w — X117 + ¥ [Ilyn — ¥*I
=2 {yn — ¥, Ayn — AY*) + 22| Ay — AY*|1?]

< anll FF) = x|+ (ame + B lxn — X* 17 + va [lyn — ¥*
+ 10— 20) | Ay, — Ay*|1?]

= || f(*) = x* | + (e + B 1xn — X* 17 + yallyn — y¥I1?
+ Yuh (A = 20) | Ay, — Ay*|?

< anll fFF) = X[+ (e + B llxn — x| + yullxn — x*|I
+ Yuh(A = 20) | Ay, — Ay*||?

< anll fOF) = x|+ llxn — X7 + vk — 20) | Ay — Ay*|?

2

2

and

Xn41 = X7 < anll £ (n) — X117 + Bullxn — x* 1> + yullon — x*|7
< apll f ) = X7+ anll &) = x|+ Bullxn — X7 + yullyn — y*II?
= ap || f(*) = x* || + (e + Ba) llxn — x*||
+¥ull Pc(un — tBuy) — Po(x* — puBx*)|*
< apll fOF) = x|+ (e + B)llxn — x* |17
+ Yullun — pBuy) — (x* — puBx*)||*
= || (%) — x| + (ane + B) o — x*|?
+ Yulll(un — x*) = (Buy — Bx™)|)?
= | f(*) = x* |+ (e + Ba) xn — X7 + v [llun — x*]1?
— 2y — x*, Buy — Bx*) + u?||Buy, — Bu*||2]
< anll f %) = x|+ (mer + B lxn — X* 112 + v [llun — x*]1?
+u(u = 28)|| Bu, — Bx*|]
= apll f () = x* |+ (e + B 1w — X1 + yallun — x*||
+ Yart (it — 2B)|| Buy — Bx*|*
< apl ) = x|+ (e + B llxn — x| + yullxn — x*|I
+ Yult(n — 28) || Buy — Bx*|?
< anll F %) = x|+ [lxn — X1 + yare(u — 28)1| Bu, — Bx*|1%.
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Therefore, we have

= o[l £ *) = X1 + (Iben = x* I + b1 — x*]))

— Yur(h = 20) | Ay — AY*[1? < anll () = X512 4 o — 211 = [0 — 2%

X (lxn = ™I = ll21 — ™))
< aull &) = X417+ (o — 5]+ a1 — x]))
X [|xXn — Xp1l (29)

and

A

— Yui( = 2B) | Buy — Bx*|* < all f (™) — x* |12 + oxw — x* |12 = Joxugr — ¥
= a | £ ) = x* 12+ (Ilen = X*[| + %01 — x*])
 (lxn = x*[| = [lxnt1 — x*1))
anll £ (%) = I + (I = x* 1 + X041 — x*11)
X |1xn — Xpg1ll- (30)

IA

Since o, — 0 and ||x, — xp+1]] = 0 asn — oo, it follows from Egs. (29) and (30) that
Ay, — Ay*|| = O and ||Bu, — Bx*|| — 0 asn — oo. From Eq. (10), we have

Ilyn — Y*II> = | Pc(un — uBuy) — Po(x* — wBx™)|?
< {(up — pBuyp) — (x* — wBx™), y, — y¥)

1
5 {Iy — nBuy) — (x* — wBx*)|1* + [ly, — y*|I?

—[l(un — Buy) — (x* — wBx*) — (yu — y")|1*}

A

1
< 5 {llun - X124 lyn = YR =y — ) — w(Buy — Bx*)—(x* — y*)|1?}
1
= 5 {lluw = "1 v = 3717 = Nt = ) = 7 = Y9I
+2u((un — yn) — (* = y*), Buy — Bx*) — p?|| Bu,, — Bx*||*}.
So, we obtain
Yn—Y = llup —x — Uy —yn) =X —Yy
[ 1 < | 12 = 1IC )= (* =92
+2u (U — yn) — (& = "), Buy — Bx*) — p?|| Bu, — Bx*||.
Hence
21 — x¥% < @l f ) = x¥I7 + (@ + B X0 — x* 1> + yullog — x*)12
< apll FF) = x| + (e + B 1xn — x* 1% + vullyw — ¥*I12
< apll FF) = X7 + (e + B + ) lxn — x*112
— Yull Gy = y) — &% = Y + 2yt ((n — )
— (x* —y*), Buy — Bx*) — yuu*|| Buy — Bx*|*

< apll FF) = X7+ g — 17 = pull e — ) — (2% = y5)1?
+2ynﬂ||(un - yn) - (X* - y*)””Bun - Bx*||7
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which implies that

Yl Gn = yn) — F = YOI < anll F*) = X2 + [l — x| = 21 — ¥
+ 2yl (up — yu) — (¢ — ¥y Bu, — Bx™||
< anll FO5) = X117 + 29l un — Yn)
— (* = YOI Buy — Bx*|| + xn — Xps1l
x (I1xn = X1 =+ g — x*[) Il 31
From Eq. 31), @y, — O, ||x, — x4+1]l = 0 and ||Bu,, — Bx*|| — 0 as n — oo, we have
Iy — yn) — (x* — y*)|| = 0as n — oo. Moreover, we note that
G — vn) + (& = Y = llyn — 2Ayn — (v — 2AY™) = [Pc(yn — 2Ayn)
—Pc(y*—1Ay")] + A(Ay, — AyH)I
< lyn=2Ay, — (Y =AAY*) — [Pc(yn—AAy,)
—Pc(y* — MY P24 ( Ay —Ay*, (yn — va) + (x*—™))
Iy — AAyn — (7F = AAY)I? = I Pc (v — AAyn)
—Pc(y* =1AYS) P24 Ayn — AY* | n—vn) + (* = y9)]|
lyn — LAy, — (3* = 2AYH)|1?
— ISPc(yn — AAyn) — SPc(y* — 1Ay™) |12
+ 21| Ay, — AY* [ — ) + (* — ¥
= llyn — AAyn — (vF = AAYH* — | Sv, — Sx*||
+ 21| Ay — Ay [l — ) + (F — ¥
< llyn — Ay, — (" — AAY™) — (Sv, — x|
X (lyn = Myn — (v = LAY || + [Sv, — x*|)
20| Ayn — AVl — va) + (£ = ¥l
= llun — Svn +x* = y* = (un — yu) — M(Ay, — Ay
X (lyn = My — (vF = LAY + [[Svp — x*|)
+ 20 Ayn — AY* Il (n — va) + (x* = yH)II. (32)

Since [|Svy, — unll = 0, [[(up — yn) — (x* = y*)|| = O and [|Ay, — Ay*|| — Oasn — oo,
it follows from Eq. (32) that ||(y, — v,) + (x* — y*)|| = 0 as n — oo. This implies that

IA

IA

1Svy — vpll < 1Sve — unll + 1 (up — yn) + (x* - y*)”
FHn = va) + @& =y = 0,n — oo.

Next, we show that

lim sup( f (zo0) — 20, xn — 20) <O,
n—oo

where zo = Pr(s)nenep(r) f (2o). To show this inequality, we choose a subsequence {vy; }
of {v,} such that

lim sup( f(z0) — z0, Svy — z0) = lim {f(z0) — z0, Svn; — 20)-
n—0o0 11— 00

Since {v,,;} is bounded, there exists a subsequence {”nij} of {v,,;} which converges weakly
to z. Without loss of generality, we can assume that v,; — z. From || Sv, — v,| — 0, we
obtain Sv,, — z. By the same argument as that in the proof of [12,Theorem 3.1, p. 555],
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we can show that z € EP(F). By Lemma 3, we obtain z € F(S). Finally, by the same
argument as that in the proof of [4,Theorem 3.1, p. 385], we can show that z € 2. Hence
ze€ F(S)N QN EP(F). Now from Eq. (11), we have

lim sup (f (z0) — 20, Xn» — zo) = lim sup(f(zo0) — 20, Svn — 20)

= lim (f(z0) — 20, Sv, — 20)
= (f(z0) — 20,2 —z0) = 0. (33)

Therefore,

lxn+1 — ZO||2 = oy f(xn) + BuXn + YuSnvn — ZO”2
< Bu(xn — 20) + Y (Spvn — ZO)”2 + 20, ( f (xn) — 205 Xn+1 — 20)
< [Bullxn — ZO”2 + Vullxn — ZO||2] + 200l xn, = zollllxn+1 — zoll
+ 20, (f (20) — 20, Xn+1 — 20)
2 2 2 2
< (=) llxn — 20ll” + ana (”xn = 20ll” + lIXn41 — 2ol )
+ 20, (f(z0) — 20, Xnt+1 — 20)

which implies that

2(1 — ) o2
2 n 2 2
IXn+1 —zoll” <\ 1 — ———— ) llxn — 201" + ||, — zo]|
1 — ooy 1 — ooy
20,

+

(f(z0) — 20, Xnt1 — 20)-

1 —aa,
Finally by Eq. (33) and Lemma 4, we conclude that {x, } converges to z¢. This completes the
proof. m}

Corollary 1 (Ceng et al. [4]) Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A, B : C — H be the o and B—inverse-strongly monotone mappings, respec-
tively and let S be a nonexpansive mapping of C into itself such that F(S) N Q2 # (. Suppose
x1 =u € C and {x,} is generated by

Yn = Pc(xy — uBxy)

(34)
Xpp1 = it + Buxn + YuSPc(Yu — AAyn),

foralln € N, where ). € (0,2a), u € (0,28) and {o,}, {Bn}, {yn} are three sequences in
[0, 1] satisfying

@ oy +Bu+yva=1
(i) limy ooy =0, Zf,ozl oy = 00,
(iii) 0 <liminf,_ o B, <limsup,_, ., Bn < 1,

then {x,} converges strongly to X € F(S) N Q where X = Pr(s)nqu and (X, y) is a solution
of problem (5) such that y = Pc(x — uBx).

Proof Put S, = Sforalln € N, f(x) = u := x; forall x € H and F(x, y) = 0 for all
x,y € Candr, = 1, we get u, = x,, in Theorem 1. Then, from Theorem 1 the sequence
{x,} generated in Corollary I converges strongly to x = Pr(s)nqu and (X, y) is a solution
of problem Eq. (5) such that y = Pc(x — uBx). ]
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Corollary 2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be
a bifunction from C x C — R satisfying (Al)-(A4) and let A, B : C — H be the a and
B—inverse-strongly monotone mappings, respectively such that Q N EP(F) # (. Let f be
a contraction of H into itself with o € (0, 1) Suppose x1 = u € C and {x,}, {yn} and {u,}
are given by

v

1
F(uy,y) + 7(y —Up, Uy —Xp) =20, VyeC;

n
Yn = Pc(uy — nBuy)
Xpp1 = An f(Xn) + Buxn + Vu Pc(yn — AAyn), (35)

forall n € N, where ). € (0,2a), u € (0,28) and {a,}, {Bn}, {yn} are three sequences in
[0, 1] and {r,} C (0, co) satisfying

(1) an+ﬂn+)’n = 1,

(i) limy—oo 0 =0, D02 | oty = 00,
(iii) 0 < liminf, o By < limsup,_, o Bn < 1,
(v) liminf, oo 7y > 0, 202 | |rag1 — rnl < 00,

then {x,} converges strongly to x € QN EP(F) where x = Ponppr) f(X) and (X,y) isa
solution of problem Eq. (5) such that y = Pc(x — uBX).

Corollary 3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be
a bifunction from C x C — R satisfying (Al)-(A4) and let A : C — H be an a—inverse-
strongly monotone mappings. Let [ be a contraction of H into itself with o € (0, 1) and let
{Sn} be a sequence of nonexpansive mappings of C into itself such that satisfies condition
Eq. (13) and N2 | F(Sy) N QN EP(F) # 0. Suppose x; = u € C and {x,}, {y,} and {u,}
are given by

1
F(uy, y)+7(y_unaun —x,) >0, VyeC;

n
yn = Pc(up — nAuy)
Xn+1 = O[nf(xn) + lgn-xn + J/nSnPC(yn - )hAyn)s (36)

foralln € N, where A, u € (0, 2a) and {on}, {Bn}, {yn} are three sequences in [0, 1] and
{rn} C (0, 00) satisfying

O o+ B +yva=1

(i) limy— oo an = 0, 302 @y = 00,
(iii) 0 <liminf,_ o B, <limsup,_, . Bn < 1,
(iv) lminf, oo ry > 0, 207 | |rug1 — ral < 00.

If S is a mapping of C into itself defined by Sx = lim,_oc Syx Vx € C and F(S) =
ﬂ;’;]F(Sn), then {x,} converges strongly to x € F(S) N Q N EP(F) where x =
PrsynenepF) f(X) and (X, y) is a solution of problem Eq. (6) such that y = Pc (X — Ax).

4 Applications
Using Theorem 1, we prove three theorems in Hilbert space.

Let Ty, T», ... be an infinite sequence of mappings of C into itself and let A1, A7, ... be real
numbers such that 0 < A; < 1 forevery i € N. Then for any n € N, Takahashi [16] (see also
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[14], [17]) defined a mapping W,, of C into itself as follows:

Un,n+1 =1,
Un,n = )\nTnUn,n-H + (1 - )\n)L
Un,nfl = )\nflTnflUn,n + (1 - )Lnfl)la

Unke = MTiUp g1 + (1 = )1,
Unj—1 = 1Tk 1Up e + (1 — A1),

Uno = MTU, 3+ (1 =221,
Wy=Up1 =MT1U2+ 1A —ApL

Such a mapping W, is called the W-mapping generated by T,, T,—1,...,T; and A,,
)"nfla (X3 )"1~

In the following Lemma, we can see the prove in Shimoji and Takahashi [14] and Chang
et al.[5].

Lemma 10 ([14] and [5]) Let C be a nonempty closed convex subset of a Banach space E.
Let {T;}{2, be a sequence of nonexpansive mappings of C into itself with ﬂ?il F(T;) # 0,
{Ai}32, be a real sequence such that0 < A; < b < 1, Vi > 1. Then:

(1) W, is nonexpansive and F(W,) = ﬂ?il F(T;) for eachn > 1;
(2) foreach x € C and for each positive integer k, the lim,_, oo Uy kX exists;
(3) the mapping U : C — C defined by

Ux = lim Wyx = lim U, 1x, xe€C
n—o0 n—oo

is nonexpansive mapping satisfying F(U) = N2 | F(T;)and it is called the W-mapping
generated by Ty, Ta, ... and A1, Ay, ...;
4) limy, o0 SUP,c g IWix — Wyx|| = O for any bounded subset K of E.

Setting S, = W,, in Theorem 1 and using Lemma 10 we obtain the next theorem.

Theorem 2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be
a bifunction from C x C — R satisfying (Al)-(A4) and let A, B : C — H be the a and
B—inverse-strongly monotone mappings, respectively. Let f be a contraction of H into itself
with a € (0, 1) and let {T,} be a sequence of nonexpansive mappings of C into itself such
that ﬂ;’lole(T,,) NQNEP(F) # (. Let a and b be real numbers with 0 < a < b < 1
and let L1, M2, ... be a sequence of real numbers such that 0 < a < X, < b < 1 for
everyn = 1,2, .... Let W,, be a W-mappings of C into itself generated by T,,, T,—1, ..., T1,
Any An—1, ..., A1. Let U defined by Ux = limy o0 Wyx = lim,— o0 Uy, 1x for every x € C.
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Suppose x1 = u € C and {x,}, {y,} and {u,} are given by

1
F(un,y) + 7<y_una up —xz) 20, VyeC;

n
yn = Pc(un — nBuy)
Xpp1 = @n f(X0) + Buxn + Y Wu Pc(yn — AAyn), (37)

for all n € N, where & € (0,2a), u € (0,28) and {a,}, {Bn}, {yn} are three sequences in
[0, 1] and {r,} C (0, c0) satisfying

@) an+Bn+yn=1

(i) limy—oo o =0, D02 | oty = 00,
(iii) 0 < liminf, .o By <limsup,_, o Bn < 1,
(iv) liminf,—oory > 0, >0 | [rps1 — ra| < 00,

then {x,} converges strongly to x € F(U) N Q N EP(F) where x = Pruynenepr) f(X)
and (X, y) is a solution of problem (5) such that y = Pc (X — uBX).

A mapping T : C — C is called strictly pseudocontractive on C if there exists k with
0 <k < 1 such that

ITx — Tyl < llx — yI* + kIl = T)x + (I = T)y||*>, forall x,y e C.

If k = 0, then T is nonexpansive. Put A = I — T, where T : C — C is a strictly pseudo-
contractive mapping with k. Then we have, forall x, y € C,

(I — A)x — (I — A)yl? < llx — ylI* + kllAx — Ay]||>.
On the other hand, we have
(T — A)x — (I — A)yI> = Ilx — ylI> = 2(x — y, Ax — Ay) + || Ax — Ay|*.

Hence we have
1—k 2
(x =y, Ax — Ay) 2 —— || Ax — Ay|I".
Then, A is %— inverse strongly monotone.

Now, using Theorem 1, we state a strong convergence theorem for a pair of a countable
family of nonexpansive mappings and strictly pseudocontractive mapping.

Theorem 3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F
be a bifunction from C x C — R satisfying (Al)-(A4) and let T,V : C — C are strictly
pseudocontractive with constants k, [, respectively. Let f be a contraction of H into itself
with o € (0, 1) and let {S,} be a sequence of nonexpansive mappings of C into itself such
that satisfies condition Eq. (13) and N2 | F(S,) NQ N EP(F) # §. Suppose x; =u € C
and {x,}, {yn} and {u,} are given by

1
F(up, y) +—(y —up,up —x,) =0, VyeC;

n
Yo = (I — wuy + uVuy
Xnt1 = [ (Xn) + Buxn + VuSu (1 = ) yn + AT yu), (38)

foralln € N, where . € (0,1 —k), u € (0,1 —=1) and {a,,}, {Bn}, {yn} are three sequences
in [0, 1] and {r,} C (0, co) satisfying
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@) an+Bn+yn=1,

(i) limy—oo 0 =0, D0 | &ty = 00,
(iii) 0 < liminf, o By <limsup,_, o Bn < 1,
(iv) liminf,—oory > 0, 202 | [Fps1 — ra| < 00,

If S is a mapping of C into itself defined by Sx = lim,_ 00 SpxVx € C and F(S) =

N2 F(Sy), then {x,} converges strongly to xe€ F(S) N Q N EP(F) where ¥ =
Prsynanepr) f (X) and (x, y) is a solution of problem Eq. (5) suchthaty = (1—p)x+pVXx.

Proof PtA=1—Tand B=1—V.Then Ais %—inverse—strongly monotone and B is

% —inverse-strongly monotone, respectively. We have that

Pc(up — ApAuy) = (1 — wuy, + uVuy,
and
PC(yn - )“AYn) = (1 - )‘)yn + )“Tyn-

Therefore, by Theorem 1 and Eq. (38), the conclusion follows. O

Theorem 4 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be
a bifunction from C x C — R satisfying (Al)-(A4) and let A : H — H be an a—inverse-
strongly monotone mapping. Let f be a contraction of H into itself witha € (0, 1) and l{S,,}
be a sequence of nonexpansive mappings of C into itself such that satisfies condition Eq. (13)
and N2 F(8,) NQN EP(F) # 0. Suppose x1 = u € C and {x,}, {yn} and {u,} are given
by

1
F(un,y) + T(Y_Mrz,urz —x) >0, Vy e C;

n

Yn = Uy + ALAuy,
Xn+l = anf(-xn) + ,ann + VnSn()’n - )\Ayn)v (39)

Jor all n € N, where ) € (0,2a) and {an}, {Bn}, {va} are three sequences in [0, 1] and
{rn} C (0, 00) satisfying

@) an+Bn+yn=1

(i) limy—oo 0y =0, D02 | &ty = 00,
(iii) 0 < liminf, .o By <limsup,_, o Bn < 1,
(iv) liminf,—oorp > 0, >0 | |Fps1 — ra| < 00,

If S is a mapping of C into itself defined by Sx = lim,_ 00 SyxVx € C and F(S) =
N2 F(Sy), then {x,} converges strongly to ¥ € F(S) N A0 N EP(F) where ¥ =
Prsyna-tonepr) S (%)

Proof Put A = n,C = H, B = A and Py = I. By the same argument as that in the proof
of [4,Theorem 4.1, p. 388], we can show that A0 = Qand

problem(5) < problem(6) < VI(A, H).

Thus, by Theorem 1 we obtain the desired result. O
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